Lentiviral labeling of mouse and human enteric nervous system stem cells for regenerative medicine studies
نویسندگان
چکیده
BACKGROUND Reliable methods of labeling human enteric nervous system (ENS) stem cells for use in novel cell replacement therapies for enteric neuropathies are lacking. Here, we explore the possibility of using lentiviral vectors expressing fluorescent reporter genes to transduce, label, and trace mouse and human ENS stem cells following transplantation into mouse gut. METHODS Enteric nervous system precursors, including ENS stem cells, were isolated from enzymatically dissociated mouse and human gut tissues. Lentivirus containing eGFP or mCherry fluorescent reporter genes was added to gut cell cultures at a multiplicity of infection of 2-5. After fluorescence activated cell sorting for eGFP and subsequent analysis with markers of proliferation and cell phenotype, transduced mouse and human cells were transplanted into the gut of C57BL/6 and immune deficient Rag2-/gamma chain-/C5 mice, respectively and analyzed up to 60 days later. KEY RESULTS Mouse and human transduced cells survived in vitro, maintained intense eGFP expression, proliferated as shown by BrdU incorporation, and formed characteristic neurospheres. When transplanted into mouse gut in vivo and analyzed up to 2 months later, transduced mouse and human cells survived, strongly expressed eGFP and integrated into endogenous ENS networks. CONCLUSIONS & INFERENCES Lentiviral vectors expressing fluorescent reporter genes enable efficient, stable, long-term labeling of ENS stem cells when transplanted into in vivo mouse gut. This lentiviral approach not only addresses the need for a reliable fluorescent marker of human ENS stem cells for preclinical studies, but also raises the possibility of using lentiviruses for other applications, such as gene therapy.
منابع مشابه
Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملEstablishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide
Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...
متن کاملLentiviral Mediated Expression of Soluble Neuropilin 1 Inhibits Semaphorin 3A-mediated Collapse Activity in Vitro
Introduction: Semaphorin 3A (Sema 3A) is a secreted protein, which plays an integral part in developing the nervous system. It has collapse activity on the growth cone of dorsal root ganglia. After the development of the nervous system, Sema 3A expression decreases. Neuropilin 1 is a membrane receptor of Sema 3A. When semaphorin binds to neuropilin 1, the recruitment of oligodendrocyte precurso...
متن کاملBiological characteristics of Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and its therapeutic applications in regenerative medicine
Stem cells isolated from human exfoliated deciduous teeth (SHEDs) are multipotent mesenchymal stem cells that are isolated from dental pulp tissues. These cells have a high proliferative capacity, multipotential ability, immunomodulatory function, and minimal risk of oncogenesis. Recent studies have shown that SHEDs are a feasible cell source for cell therapy and regenerative medicine.
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کامل